Abstract [Download PDF] [Read Full Text]
Retinal degeneration, associated with loss of photoreceptors, is the primary cause of permanent vision impairment, impacting millions of people worldwide. Age-related macular degeneration and retinitis pigmentosa are two common retinal diseases resulting in photoreceptor loss. Recently, many studies were working on the application of polymer scaffolds in retinal stem cell transplantation. The results showed that polymer scaffolds can delivery transplanted cells to the correct site and promote cell survival, integration, differentiation, thereby providing a good platform for cell transplantation. There are different transplantation cell types. Moreover, different materials have different advantages and disadvantages. The ideal scaffold should have the following characteristics: thin, biocompatible, biodegradable, certain mechanical strength and flexibility, and easy to bind. Surface modification of materials can improve their functioning. In addition to the cells, the scaffold can directional transport substances, such as drugs. Polymer scaffolds have a good prospect in the application of retinal cell transplantation. This paper summarized the findings of different scaffolds for cell delivery to the sub-retinal space-based transplant technology.